Linia 9: | Linia 9: | ||
W sekwencji rodopsyny występują charakterystyczne motywy dobrze zachowane w procesie ewolucji także w innych typach receptorów GPCR z rodziny A (Rys. 7.) [1, 11, 12]. Po stronie cytoplazmatycznej helisy TMH:III, znajduje się mikrodomena D(E)RY (a szczególnie środkowa, najbardziej zachowana w ewolucji reszta Arg:3.50), która tworzy połączenie pomiędzy helisami TMH:III i TMH:VI [11] poprzez utworzenie mostka solnego pomiędzy resztami Arg:3.50 oraz Glu:6.30. Podczas aktywacji receptora mostek ten ulega zerwaniu a część cytoplazmatyczna helisy TMH:VI ulega przemieszczeniu, tworząc w ten sposób miejsce na związanie białka G. Innym motywem o istotnym znaczeniu jest mikrodomena NPxxY obecna na helisie VII, która łączy helisy TMH:VII i H:VIII. Ten fragment łańcucha białkowego, również bierze udział w procesie aktywacji receptora prowadzącej do tworzenia kompleksu z białkiem G [2, 12]. Wzajemne położenie siedmiu helis transbłonowych rodopsyny stabilizowane jest dodatkowo przez oddziaływania hydrofobowe, jonowe, a także liczne wiązania wodorowe [1]. Badania krystalograficzne ujawniły także obecność cząsteczek wody w strukturze rodopsyny, które także uczestniczą w sieci wiązań wodorowych we wnętrzu receptora [13] i pośredniczą w procesie aktywacji. | W sekwencji rodopsyny występują charakterystyczne motywy dobrze zachowane w procesie ewolucji także w innych typach receptorów GPCR z rodziny A (Rys. 7.) [1, 11, 12]. Po stronie cytoplazmatycznej helisy TMH:III, znajduje się mikrodomena D(E)RY (a szczególnie środkowa, najbardziej zachowana w ewolucji reszta Arg:3.50), która tworzy połączenie pomiędzy helisami TMH:III i TMH:VI [11] poprzez utworzenie mostka solnego pomiędzy resztami Arg:3.50 oraz Glu:6.30. Podczas aktywacji receptora mostek ten ulega zerwaniu a część cytoplazmatyczna helisy TMH:VI ulega przemieszczeniu, tworząc w ten sposób miejsce na związanie białka G. Innym motywem o istotnym znaczeniu jest mikrodomena NPxxY obecna na helisie VII, która łączy helisy TMH:VII i H:VIII. Ten fragment łańcucha białkowego, również bierze udział w procesie aktywacji receptora prowadzącej do tworzenia kompleksu z białkiem G [2, 12]. Wzajemne położenie siedmiu helis transbłonowych rodopsyny stabilizowane jest dodatkowo przez oddziaływania hydrofobowe, jonowe, a także liczne wiązania wodorowe [1]. Badania krystalograficzne ujawniły także obecność cząsteczek wody w strukturze rodopsyny, które także uczestniczą w sieci wiązań wodorowych we wnętrzu receptora [13] i pośredniczą w procesie aktywacji. | ||
+ | |||
+ | ==Literatura== |
Wersja z 01:16, 27 sty 2012
Rodopsyna
Rodopsyna jest białkiem fotoreceptorowym zlokalizowanym w komórkach pręcikowych siatkówki oka. Receptor ten bierze udział w kaskadach sygnalizacyjnych umożliwiających przekształcenie sygnału świetlnego w impuls nerwowy [1]. Absorpcja pojedynczego fotonu jest wystarczająca do przejścia receptora w stan aktywny, co umożliwia związanie i aktywację białka G (transducyny) po wewnętrznej stronie błony komórkowej [2]. Aktywna podjednostka Ga aktywuje fosfodiesterazę [3, 4], enzym hydrolizujący cykliczny GMP (cGMP) do GMP, co zmniejsza stężenie cGMP. Zmiana stężenia cGMP skutkuje czasowym zamknięciem kanałów potasowych powodując depolaryzację błony i przepływ prądu do synapsy i dalej do mózgu. Przekazany sygnał ulega istotnemu wzmocnieniu. Dzieję się tak gdyż pojedyncza molekuła rodopsyny może aktywować ok. 500 cząsteczek białka G.
Rodopsyna zbudowana jest z części białkowej opsyny oraz grupy prostetycznej 11�cis-retinalu (pochodnej witaminy A) (Rys. 6.). Kowalencyjnie związany ligand znajduje się w kieszeni hydrofobowej, otoczonej przez helisy (TMH:II do TMH:VII), którą przykrywa druga pętla cytoplazmatyczna (EL:II). Połączenie pomiędzy grupą aldehydową 11-cis-retinalu oraz łańcuchem bocznym Lys:7.43 tworzy uprotonowana zasada Schiffa [5]. Absorpcja kwantu światła przez 11-cis-retinal skutkuje jego izomeracją i przejściem w całkowicie-trans-retinal [1]. Zmiana w strukturze przestrzennej tego liganda prowadzi do zmian konformacyjnych całego receptora oraz jego aktywacji [6].
Rodopsyna jest białkiem o masie 40 kDa (kilodaltonów), składającym się z 348 aminokwasów (AA). Rodopsyna, podobnie jak inne receptory GPCR, posiada charakterystyczny motyw siedmiu a-helis przechodzących przez dwuwarstwę lipidową. Ich długość wynosi odpowiednio od 19 AA do 34 AA. Najkrótsza helisa VIII położona jest równolegle do dwuwarstwy lipidowej, po stronie cytoplazmatycznej [7].
N-koniec rodopsyny zbudowany jest z 33 AA i jest dosyć sztywny bowiem jego konformację stabilizuje b-kartka utworzona przez reszty Thr:4-Glu:5 oraz Tyr:10-Val:11 [8]. Dwie reszty asparaginowe zlokalizowane na pozycji 2 oraz 15 (Asn:2 oraz Asn:15) są miejscami glikozylacji receptora. Helisy transbłonowe rodopsyny posiadają nieregularną budowę oraz są odchylone od pionowej osi białka [7]. Zgięcia helis powstają głównie na skutek występujących w sekwencji reszt: prolin oraz glicyn. Największe zgięcia w TMH:VI oraz TMH:VII spowodowane są przez obecność dobrze zachowanych w sekwencji reszt Pro:6.50 oraz Pro:7.50. W helisach TMH:II oraz TMH:V występują odstępstwa od a-helikalnej struktury drugorzędowej na skutek obecności dodatkowych aminokwasów, odpowiednio: Gly:2.56 oraz Phe:5:47, tworzących w miejscu występowania fragmenty p-helisy. Również w rejonie zgięcia TMH:VII, fragment łańcucha białkowego przyjmuje nietypową konformację helisy 310. Pętle łączące helisy są relatywnie krótkie z wyjątkiem EL:II oraz IL:II. Najdłuższa pętla rodopsyny (EL:II), zlokalizowana pomiędzy helisami TMH:IV oraz TMH:V, szczelnie przykrywa miejsce wiązania retinalu zapobiegając prawdopodobnie samoistnej aktywacji rodopsyny, co jest niezwykle istotne dla procesu widzenia [9]. Fragmenty pętli łączącej TMH:IV oraz TMH:V: Ile:179 do Glu:181 oraz Ser:186 do Ile:189, tworzą strukturę b-kartki [8]. Za stabilizację pętli EL:II odpowiada dodatkowo wiązanie disulfidowe tworzone pomiędzy Cys:3.25 z helisy TMH:III oraz Cys:187 z pętli EL:II. Najdłuższą pętlą znajdującą się po stronie wewnątrzkomórkowej jest IL:II, łącząca TMH:IV oraz TMH:V. Porównanie wszystkich dostępnych struktur krystalicznych rodopsyny, zdeponowanych w bazie PDB, pozwala przypuszczać, iż fragment ten nie przyjmuje jednoznacznie określonej, stabilnej konformacji. Duże wartości czynnika temperaturowego dla tego odcinka łańcucha peptydowego również sugerują jego wysoką mobilność. Domena tworząca C-koniec receptora, od Asn:310 do Ala:348, nie jest dobrze upakowana. Między obecnymi tam aminokwasami nie występują żadne oddziaływania usztywniające ten fragment łańcucha białkowego. Krótka helisa H:VIII, znajdująca się na powierzchni błony, jest stabilizowana dzięki palmitylacji Cys:323 i Cys324 [10]. Długie palmitylowe łańcuchy, obecne na końcu tej helisy, są trwale zakotwiczone w błonie komórkowej.
W sekwencji rodopsyny występują charakterystyczne motywy dobrze zachowane w procesie ewolucji także w innych typach receptorów GPCR z rodziny A (Rys. 7.) [1, 11, 12]. Po stronie cytoplazmatycznej helisy TMH:III, znajduje się mikrodomena D(E)RY (a szczególnie środkowa, najbardziej zachowana w ewolucji reszta Arg:3.50), która tworzy połączenie pomiędzy helisami TMH:III i TMH:VI [11] poprzez utworzenie mostka solnego pomiędzy resztami Arg:3.50 oraz Glu:6.30. Podczas aktywacji receptora mostek ten ulega zerwaniu a część cytoplazmatyczna helisy TMH:VI ulega przemieszczeniu, tworząc w ten sposób miejsce na związanie białka G. Innym motywem o istotnym znaczeniu jest mikrodomena NPxxY obecna na helisie VII, która łączy helisy TMH:VII i H:VIII. Ten fragment łańcucha białkowego, również bierze udział w procesie aktywacji receptora prowadzącej do tworzenia kompleksu z białkiem G [2, 12]. Wzajemne położenie siedmiu helis transbłonowych rodopsyny stabilizowane jest dodatkowo przez oddziaływania hydrofobowe, jonowe, a także liczne wiązania wodorowe [1]. Badania krystalograficzne ujawniły także obecność cząsteczek wody w strukturze rodopsyny, które także uczestniczą w sieci wiązań wodorowych we wnętrzu receptora [13] i pośredniczą w procesie aktywacji.