PRZYGOTOWANIE PLIKÓW DO DYNAMIKI MOLEKULARNEJ

ŁUKASZ CHARZEWSKI

13.12.2016

KLASYCZNA DYNAMIKA MOLEKULARNA

KORZYSTAMY Z RÓWNAŃ RUCHU NEWTONA:

$$\vec{F}_{i} = m_{i} \frac{d^{2} \vec{r}_{i}}{dt^{2}}$$
 $\vec{F}_{i} = -\vec{\nabla}_{r_{i}} V(\vec{r}_{1},...,\vec{r}_{N})$

I WYZNACZAMY TRAJEKTORIE UKŁADU CZĄSTEK W POLU SIŁOWYM (U NAS – CHARMM27)

KLASYCZNA DYNAMIKA MOLEKULARNA

SYMULACJĘ RUCHU CZĄSTECZEK BIOLOGICZNYCH PROWADZIMY W WARUNKACH JAK NAJBARDZIEJ ZBLIŻONYCH DO RZECZYWISTYCH:

- W WODZIE
- PRZY ODPOWIEDNIM STĘŻENIU JONÓW
- W RAZIE POTRZEBY W BŁONIE BIOLOGICZNEJ

Jak taki układ przygotować?

TOPOLOGIA UKŁADU

- W SYMULACJACH PROWADZONYCH METODAMI KLASYCZNEJ DYNAMIKI MOLEKULARNEJ TOPOLOGIA UKŁADU JEST USTALONA I NIEZMIENNA
- PLIKI PDB NIE PRZECHOWUJĄ TEJ INFORMACJI
- PO OPRACOWANIU UKŁADU NALEŻY PRZYGOTOWAĆ PLIK
 ZAWIERAJĄCY OPIS TOPOLOGICZNY (PSF PROTEIN STRUCTURE FILE)

TOPOLOGIA UKŁADU – PLIK PSF

PSF CMAP

29 !NTITLE

REMARKS original generated structure x-plor psf file REMARKS 25 patches were applied to the molecule. REMARKS topology top_all27_prot_na.inp REMARKS segment MMP3 { first NTER; last CNEU; auto angles dihedrals } REMARKS defaultpatch NTER MMP3:83 REMARKS patch CNEU MMP3:250 REMARKS patch ASPP MMP3:183

2640 !NATOM

1	MMP 3	83	PHE	Ν	NH3	-0.300000	14.0070	0
2	MMP 3	83	PHE	HT1	HC	0.330000	1.0080	0
3	MMP 3	83	PHE	HT2	HC	0.330000	1.0080	0
4	MMP 3	83	PHE	HT3	HC	0.330000	1.0080	0
5	MMP 3	83	PHE	CA	CT1	0.210000	12.0110	0

2684 !NBOND: bonds

	1	5	2	1	3	1	4	1
	5	6	7	5	7	8	7	9
799	!NTHETA:	angles						
	1	5	6	1	5	21	2	1

7104 !NPHI: dihedrals

	1	5	7	9
2	INTMDUT .	impror	ore	

433 !NIMPHI: impropers 21 5 23 22 23

TOPOLOGIA UKŁADU – PLIK PSF

Podział na segmenty – każdy segment należy zapisać jako oddzielny plik PDB:

- Każde białko osobno
- Każdy ligand osobno
- Jony strukturalne mogą być razem
- Program psfgen dostarczany razem z NAMDem:
 - \$ module load namd/2.11
 - \$ psfgen < psf.in > psf.out
- Powstają 3 pliki:
 - PDB koordynaty wszystkich atomów
 - PSF topologia układu
 - OUT log z przebiegu programu:
 - Atomy, których brakuje w układzie (lub które nie zostały rozpoznane) mogą zostać odgadnięte przez program na podstawie wpisów "internal coordinates" znajdujących się w jednym z plików wejściowych
 - Zgadzamy się tylko na odgadywanie położeń wodorów.

SKRYPT PSEIN

topology /home/charzewski/wzory top27rodlip.inp

alias residue his hsd segment mmp3 { pdb /home/charzewski/uklad/MMP3.pdb } alias atom ile cd1 cd coordpdb /home/charzewski/uklad/MMP3.pdb mmp3

konstrukcja pojedynczego segmentu

alias residue his hsd segment tim1 { pdb /home/charzewski/uklad/TIMP1.pdb } alias atom ile cd1 cd patch disu tim1:1 tim1:70 patch glup tim1:122 coordpdb /home/charzewski/uklad/TIMP1.pdb tim1

zmiana nazwy atomu w całym segmencie

plik zawierający opis topologii każdego residuum w układzie

zmiana nazwy residuum w całym segmencie

segment jony { auto none pdb /home/charzewski/uklad/jony.pdb } coordpdb /home/charzewski/uklad/jony.pdb jony

quesscoord

writepdb /home/charzewski/uklad/poPSF.pdb writepsf /home/charzewski/uklad/poPSF.psf blokuje automatyczne dodawanie C- i Nkońca, kątów itd.

modyfikacje pojedynczych aminokwasów

PLIK INP

- Krótki opis każdego typu atomu
- Masa atomu

E R

Budowa residuum:

RESI	ALA		0.00					
GROUI	2							
ATOM	Ν	NH1	-0.47	!	1			
ATOM	HN	Н	0.31	!	HN-N			
ATOM	CA	CT1	0.07	!	1	HB1		
ATOM	HA	HB	0.09	!	I.	/		
GROUI	2			!	HA-CA	CB-HB2		
ATOM	CB	CT3	-0.27	!		\		
ATOM	HB1	HA	0.09	!	1	HB3		
ATOM	HB2	HA	0.09	!	O=C			
ATOM	HB3	HA	0.09	!	1			
GROUI	2			!				
ATOM	С	С	0.51					
ATOM	0	0	-0.51					
BOND	CB CA	A N	HN N (CA				
BOND	C CA	A C	+N CA I	HA (CB HB1	. CB HB2	СВ НВЗ	
DOUBI	le o	С						
IMPR	N -C	CA HN	C CA -	+N O				
CMAP	-C 1	J CA	C N	CA	C + N	[
DONOB	RHNN	1						
ACCEI	PTOR C) C						
IC -0	C CA	4 *N	HN	1.3	3551 1	26.4900	180.0000	115.4200
IC -0	C N	CA	. C	1.3	3551 1	26.4900	180.0000	114,4400

0.9996

TOPOLOGIA UKŁADU TOPO/ASF

Skrypt psf.in dla układu ASF/TOPO:

```
topology (scieżka do pliku topologicznego top_all27_prot.inp)
alias residue his hse
segment (4 literowa nazwa) { pdb (ścieżka do pliku z topoizomerazą) }
alias atom ile cdl cd
coordpdb (ścieżka do pliku z topoizomerazą) (4 literowa nazwa)
alias residue his hse
segment (4 literowa nazwa) { pdb (ścieżka do pliku z asf) }
alias atom ile cdl cd
coordpdb (ścieżka do pliku z asf) (4 literowa nazwa)
guesscoord
writepdb (ścieżka do wyjściowego pliku pdb)
writepsf (ścieżka do wyjściowego pliku psf)
```

Wyjściowe pliki PDB i PSF należy obejrzeć w VMD

DODAWANIE WODY W VMD

- Znajdując się w odpowiednim katalogu roboczym uruchamiamy VMD należy wpisać w TK Console:
 - package require solvate
 - solvate poPSF.psf poPDB.pdb -t 10
- Powstają 3 nowe pliki: solvate.psf, solvate.pdb i solvate.log
- Nazwę plików wyjściowych można zmienić stosując parametr:
 o mojaNazwa
- Można także podać dokładne wymiary pudełka z wodą w postaci macierzy min_max lub podać po ile A od białka chcemy tej wody dodać w każdym wymiarze.

DODAWANIE JONÓW W VMD

Znajdując się w katalogu z plikami solvated.psf i solvated.pdb należy wpisać w TK Console:

package require autoionize

autoionize -psf solvate.psf -pdb solvate.pdb -is 0.05

- Powstają dwa nowe pliki: ionized.psf i ionized.pdb
- Program autoionize wstawia tyle jonów ile trzeba do zneutralizowania ładunku w układzie, a następnie dodatkowo wstawia tyle ile wynika z zadanego parametru

siła jonowa roztworu

1

USTALANIE WYMIARÓW KOMÓRKI ELEMENTARNEJ

- Wczytać do VMD pliki ionized.pdb i ionized.psf
- W TK Console należy wpisać:

molinfo top get {a b c}

 Dostajemy wymiary boxu proponowane przez program – zwykle są za duże o 1-2 A. np.:

63.672001 60.186001 65.139999 (wymiarX) (wymiarY) (wymiarZ)

- W menu Graphics/Representations wybieramy zakładkę
 Periodic i wyświetlamy dodatkowe kopie układu (na razie – te na osi X)
- Sprawdzamy czy wymiary są prawidłowe (powinna być widoczna cienka granica pomiędzy obrazami boksu) – dzięki temu wiemy, że cząsteczki nie nakładają się na siebie, oraz że nie ma między nimi próżni.
- W razie potrzeby podajemy nowy wymiar komórki, np.: molinfo top set a 62.96

Przydatne polecenie TK Console: rotate x by 90

USTALANIE WYMIARÓW KOMÓRKI ELEMENTARNEJ

Potrzebne są jeszcze współrzędne środka układu:

Zapisujemy wszystkie informacje do pliku xsc:

ETAPY SYMULACJI

Symulację można podzielić na trzy etapy (każdy składa się z minimalizacji i dynamiki molekularnej):

- 1. Rusza się tylko woda z jonami
- 2. Rusza się woda, jony i reszty boczne aminokwasów (poza tymi, które tworzą modelowane oddziaływania)
- 3. Rusza się wszystko

Potrzebne są dwa pliki REF, które zawierają informację co podczas symulacji ma się ruszać, a co nie.

Wykorzystujemy do tego kolumnę beta w pliku typu PDB:

- 0 ruch
- 1 zamrożenie

FIXOWANIE ATOMÓW W VMD

Wczytać ionized.psf i ionized.pdb do VMD

W TK Console należy wpisać:

L L

0/0	set all [atomselect top all]	
010	\$all set beta 0 zamrożon	<u>م</u>
010	set prot [atomselect top "segname TOPO ASF"]	
010	\$prot set beta 1	5
010	\$all writepdb fixprot.ref	
010	\$all set beta 0	
010	set bb [atomselect top "name CA C O N HN"]	
010	\$bb set beta 1	zamrożony
010	set oddtopo [atomselect top "segname TOPO and resid 345 346"]	łańcuch główny
010	\$oddtopo set beta 1	oraz wszystkie
010	set oddasf [atomselect top "segname ASF and resid 134 135"]	wymodelowane
010	\$oddasf set beta 1	odziaływania
010	\$all writepdb fixbb.ref	Surlary warna

0 – ruch 1 – zamrożenie

PLIKI WEJŚCIOWE DO DYNAMIKI

- Struktura i topologia układu ionized.pdb, ionized.psf
- Pliki konfiguracyjne:

min.conf dyn.conf min1.conf dyn1.conf min2.conf dyn2.conf

zamrożone białko

zamrożony łańcuch główny i oddziaływania

rozmrożony cały układ

- Pliki blokujące ruch wybranych atomów: fixprot.ref
 do symulacji min.conf i dyn.conf
 fixbb.ref
 do symulacji min1.conf i dyn1.conf
- Plik z wymiarami komórki elementarnej xyz.xsc
- Skrypt uruchamiający symulację:

wsad - plik wsadowy do systemu kolejkowego SLURM klastra

PLIKI KONFIGURACYJNE

numsteps	20000
coordinates	min.coor
extendedSystem	xyz.xsc
outputname	dyn
structure	ionized.psf

PME on PMEGridSpacing 1.0

if {1} {

E R

fixedAtoms on fixedAtomsFile fixbb.ref fixedAtomsCol B

THE AND THE STAR

SYSTEM KOLEJKOWY SLURM

- Polecenia są wykonywane na maszynach msys1-msys28. Można się na nie dostać przez SSH, ale wybór węzła pozostawiamy SLURMowi
- Logowanie na klaster: ssh login@bioexploratorium.pl
- Podstawowe polecenia SLURMa:
 - **squeue** wyświetla kolejkę zadań
 - scancel JOBID przerywa wykonywanie wskazanego zadania
 - srun polecenie uruchamia polecenie interaktywnie
 - **sbatch** *plik_wsadowy* uruchamia skrypt z pliku
- Standardowe wyjście i standardowe wyjścia błędów są przekierowywane do wskazanych plików (tu: stdout i stderr)
- Wszystkie etapy uruchamiamy korzystając z polecenia sbatch:
 - \$ sbatch wsad
- Plik wsad przeprowadzi kolejno wszystkie wstępne etapy symulacji. W razie potrzeby odpowiednie linijki można usunąć lub zakomentować znakiem #.
- Plik wsad uruchamia ostatni etap dynamiki molekularnej korzystając ze wsparcia GPU (stąd dodatkowe polecenia module load i module unload)

USTALANIE LICZBY KROKÓW MINIMALIZACJI

- Liczba kroków we wszystkich dynamikach zostaje bez zmian, natomiast należy poprawić liczbę kroków w min1 i min2. W tym celu korzystamy z plików out z poprzednich etapów minimalizacji (odpowiednio min i min1)
- Po skończonej minimalizacji sprawdzamy jaki jest gradient energii w pliku min.out, chcielibyśmy aby był 0,01 (reszta miejsc po przecinku nie jest ważna)
- Jeśli gradient bardzo odbiega od tej wartości, należy zwiększyć liczbę kroków w następnej minimalizacji (min1) i po skończonej symulacji znowu sprawdzamy gradient (min1.out)
- Jeśli gradient bardzo odbiega od tej wartości, należy zwiększyć liczbę kroków w następnej minimalizacji (min2) i po skończonej symulacji znowu sprawdzamy gradient (min2.out)
- Jeśli gradient odbiega od tej wartości, należy minimalizować układ (uruchamiać kolejne symulacje minimalizacji – min2a itd.), aż po skończonej symulacji uzyskamy gradient na poziomie 0,01.

LINE MINIMIZER REDUCING GRADIENT FROM 88.0673 TO 0.0880673

DZIĘKUJĘ ZA UWAGĘ!

1

CONTRACTOR OF

E R

